(What were we trying to prove? Did we prove it?) 5.3 | 5.3 3) \square Given: M is the midpoint of $\overline{HP}_{,} \angle H \cong \angle P$ Prove: Two triangle are congruent | Choose which to use
SAS≅
ASA≅
SSS≅ | |--|---| | ① I am given | | | and | | | (Mark congruent parts.) | | | | | | ② | | | | M | | (What do we know about midpoints?) | \ | | ③ ≅ because | P | | (What relationship can we get directly from the diagram? | | | Remember, "it looks like it" is not evidence for a proof.) | | | | | | ④ △ ≅ △ because | | | | | | (What shortcut did we use?) | | (Do we have enough evidence to prove our statement?.) | 5.3 | | |-----|--| | 0.0 | | (8) \square Circles A and B intersect in points C and D, Prove: \angle CAB \cong \angle DAB Choose which to use SAS≅ ASA≅ SSS≅ Plan: I will prove congruent triangles _____ and ____ to get congruent parts. (This should take 6+ steps) (9) $$\square$$ Given $\angle J = \angle M$, $\overline{JA} \cong \overline{MB}$, $\overline{JK} \cong \overline{KL} \cong \overline{LM}$, Prove: $\overline{KR} \cong \overline{LR}$ Choose which to use SAS≅ ASA≅ SSS≅ Plan: I will prove congruent triangles _____ and ____ to get congruent parts. (This should take 5+ steps) | 5.3 Exit Ticket Name | _Per | · J - · · J - · · · · · · · · · · · · · · · · · · | |---|-----------------------|---| | Complete the statement. You may use diagrams to support your statement | ent. | ☐ [®] I can with a bit of help 🕍
☐ [®] I will, given lots of help 🦮 | | Given: $\overline{AY} \cong \overline{XB}$, $\overline{AB} \cong \overline{XY}$. Prove: $\triangle ABY \cong \triangle XYB$ | _ | ☐ ⑧ I can't ♣, ☐ ৷ Won't bother to ﴾ ☐ ৷ I refuse to ﴿ | | | -
-
-
- | A R B | | 5.3 Exit Ticket Name Complete the statement. You may use diagrams to support your statement. | | ☐ [®] I can with a bit of help 🙌 | | Given: $\overline{AY} \cong \overline{XB}$, $\overline{AB} \cong \overline{XY}$. Prove: $\triangle ABY \cong \triangle XYB$ | _ | □ ⑤ I will, given lots of help ¾ □ ⑥ I can't ♣ □ ⑥ I won't bother to ∱ □ ⑥ I refuse to € | | | -
-
-
- | A X | | 5.3 Exit Ticket Name | _
_Per
ent. | _ 💮 Si got this! 🎊 f | | | -
-
-
-
- | \square \otimes I refuse to \mathscr{E} |