(What were we trying to prove? Did we prove it?)

5.3

5.3 3) \square Given: M is the midpoint of $\overline{HP}_{,} \angle H \cong \angle P$ Prove: Two triangle are congruent	Choose which to use SAS≅ ASA≅ SSS≅
① I am given	
and	
(Mark congruent parts.)	
②	
	M
(What do we know about midpoints?)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
③ ≅ because	P
(What relationship can we get directly from the diagram?	
Remember, "it looks like it" is not evidence for a proof.)	
④ △ ≅ △ because	
(What shortcut did we use?)	

(Do we have enough evidence to prove our statement?.)

5.3	
0.0	

(8) \square Circles A and B intersect in points C and D, Prove: \angle CAB \cong \angle DAB

Choose which to use SAS≅ ASA≅ SSS≅

Plan: I will prove congruent triangles _____ and ____ to get congruent parts. (This should take 6+ steps)

(9)
$$\square$$
 Given $\angle J = \angle M$, $\overline{JA} \cong \overline{MB}$, $\overline{JK} \cong \overline{KL} \cong \overline{LM}$, Prove: $\overline{KR} \cong \overline{LR}$

Choose which to use SAS≅ ASA≅

SSS≅

Plan: I will prove congruent triangles _____ and ____ to get congruent parts. (This should take 5+ steps)

5.3 Exit Ticket Name	_Per	· J - · · J - · · · · · · · · · · · · · · · · · ·
Complete the statement. You may use diagrams to support your statement	ent.	☐ [®] I can with a bit of help 🕍 ☐ [®] I will, given lots of help 🦮
Given: $\overline{AY} \cong \overline{XB}$, $\overline{AB} \cong \overline{XY}$. Prove: $\triangle ABY \cong \triangle XYB$	_	☐ ⑧ I can't ♣, ☐ ৷ Won't bother to ﴾ ☐ ৷ I refuse to ﴿
	- - - -	A R B
5.3 Exit Ticket Name Complete the statement. You may use diagrams to support your statement.		☐ [®] I can with a bit of help 🙌
Given: $\overline{AY} \cong \overline{XB}$, $\overline{AB} \cong \overline{XY}$. Prove: $\triangle ABY \cong \triangle XYB$	_	 □ ⑤ I will, given lots of help ¾ □ ⑥ I can't ♣ □ ⑥ I won't bother to ∱ □ ⑥ I refuse to €
	- - - -	A X
5.3 Exit Ticket Name	_ _Per ent.	_ 💮 Si got this! 🎊 f
	- - - - -	\square \otimes I refuse to \mathscr{E}